

MINIMAL SURFACES

IN HYPERBOLIC GEOMETRY

Winter School Côte d'Azur

Lecture I, 6th January 2026

Hyperbolic manifolds

Let (N, h) closed hyperbolic manifold,

with $\Gamma \cong \pi_1 S$ a surface subgroup-

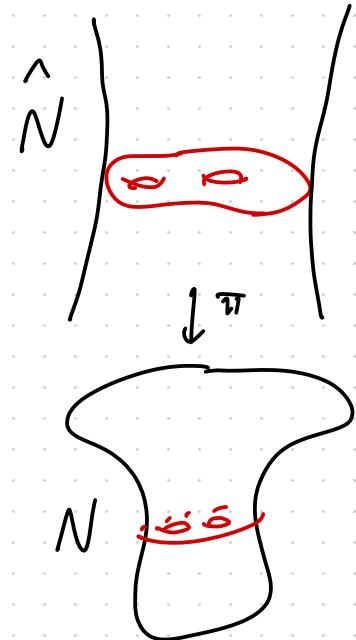
let $\hat{N} \xrightarrow{\pi} N$ the covering such that $\pi_* (\pi_1 \hat{M}) = \Gamma$,

Fact If M is a 3-manifold such that

$\pi_1 M \cong \pi_1 S$, then $M \cong S \times \mathbb{R}$.

Consider

$\text{AH}(S) = \{ \begin{matrix} \text{complete hyperbolic} \\ \text{metrics on } S \times \mathbb{R} \end{matrix} \} \xrightarrow{\text{Diff}_0(S \times \mathbb{R})}$



N

have topologies;
geometric/algebraic
convergence

The interior of $AH(S)$ is a ball of $dim_{\mathbb{R}} = 12g - 12$

Its elements are quasi-Fuchsian manifolds

$S \times \mathbb{R}$

Def Let (M^{\cong}, h) be a complete hyperbolic manifold.

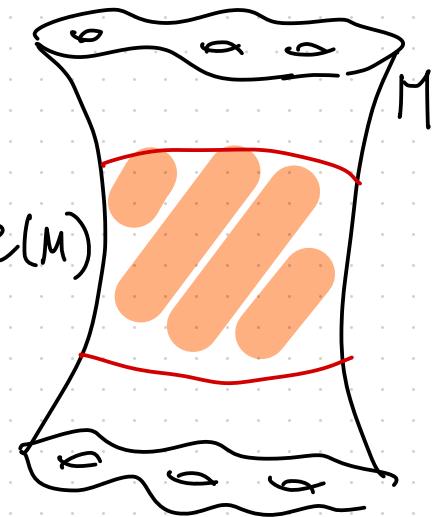
M is quasi-Fuchsian if it contains a geodesically convex, compact subset

$\mathcal{C}(M)$ = convex core of M

= smallest such subset

Schoen-Yau, Sachs-Uhlenbeck:

existence of $\Sigma \cong S \times \{*\}$ minimal
(Actually, all contained in $\mathcal{C}(M)$).



not unique
in general!

Uhlenbeck's seminal paper (1983)

Recall that

- $B = -\nabla N$ is the shape operator of $\Sigma \subset M$
- the eigenvalues λ, μ of B are the principal curvatures
- Σ is minimal if $\lambda + \mu = 0$

Def Let $(\overset{\cong}{M}, h)$ be a complete hyperbolic manifold.
 M is (weakly) almost-Fuchsian if it contains a closed
minimal surface such that the principal curvatures
are in $(-1, 1)$ ($[-1, 1]$)

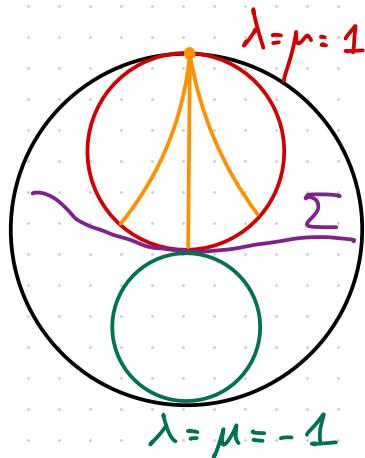
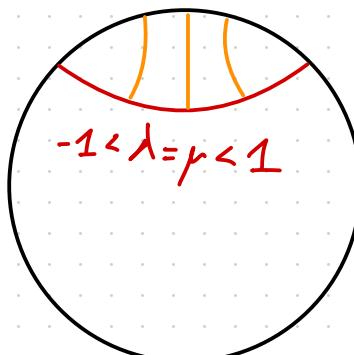
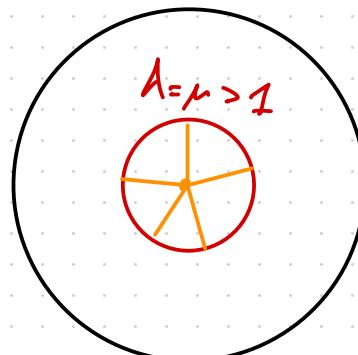
Thm (Uhlenbeck)

If M is weakly almost-Fuchsian, then it contains

- unique minimal surface homotopic to $S \times \{*\}$.

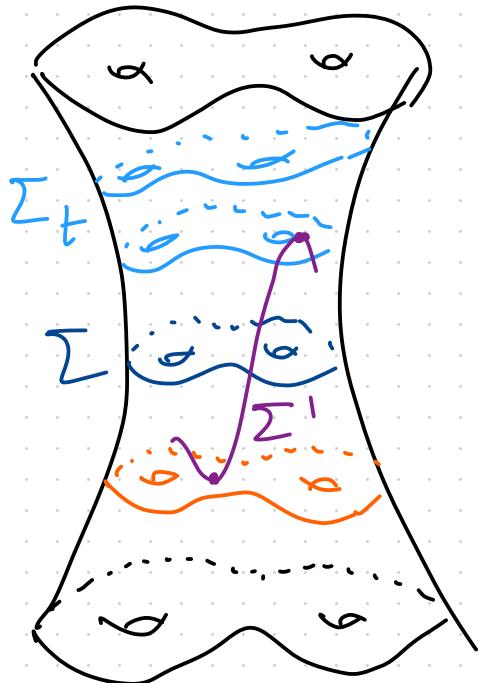
The condition $|\lambda|, |\mu| \leq 1$:

" Σ is less curved than a hemisphere"



Sketch of Pf:

The map $\Sigma \times \mathbb{R} \rightarrow M$
 $(p, t) \mapsto \exp_p(tN(p))$ is a diff.



$$\left. \begin{array}{l} t > 0 \\ H_{\Sigma_t} < 0 \end{array} \right\}$$

$$\left. \begin{array}{l} t < 0 \\ H_{\Sigma_+} > 0 \end{array} \right\}$$

Geometric maximum principle

uniqueness of Σ

See Sheet 2, Exercises 2 & 3

Summary: WAF \Rightarrow uniqueness of
minimal surface

not a necessary condition !

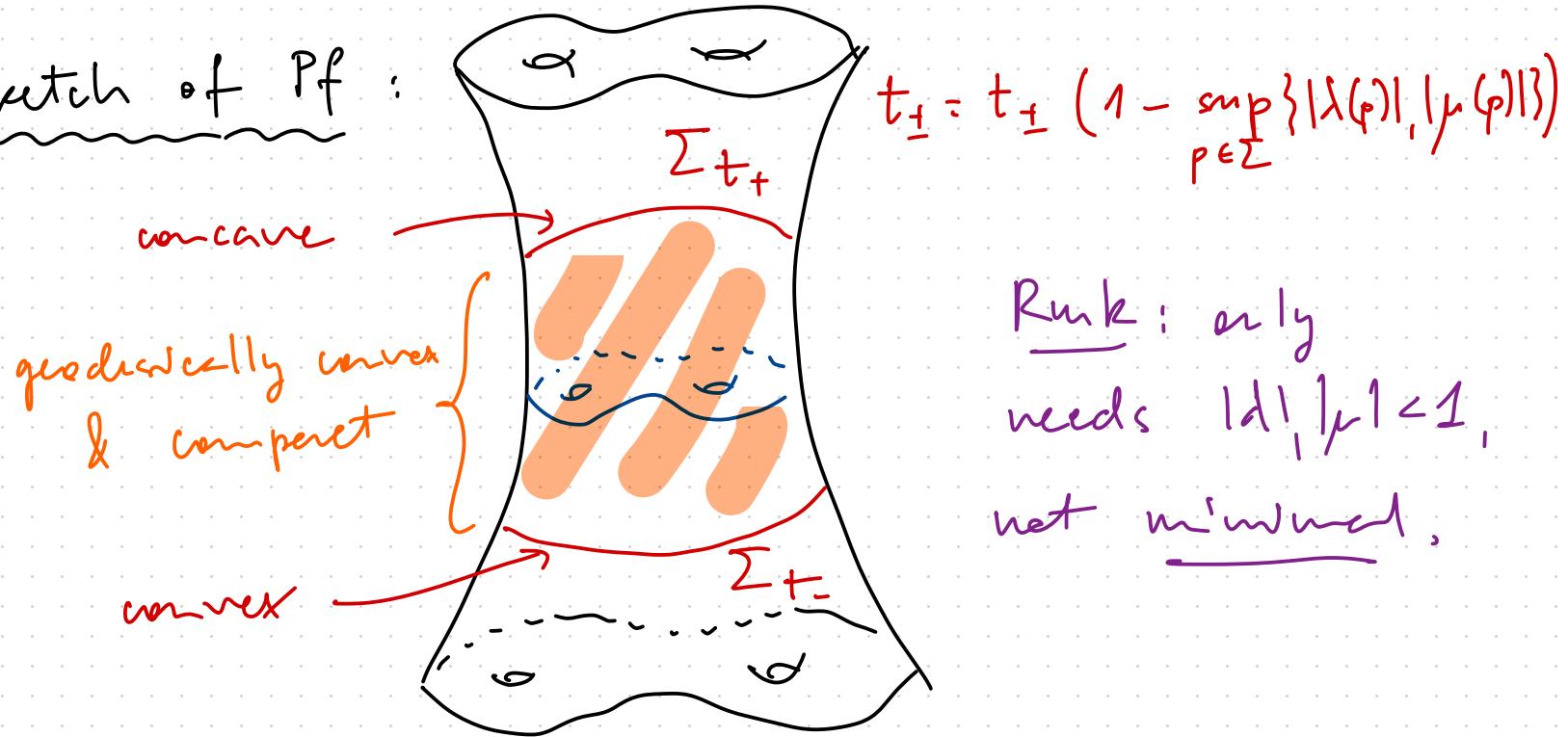
Thm (Huang - Lowe '25)

There exist quasi-Fuchsian manifolds that contain
a unique closed minimal surfaces homotopic to
 $\Sigma \times \{*\}$, that are not weakly almost-Fuchsian.

Thm (Uhlenbeck)

If M is almost-Fuchsian, then it is quasi-Fuchsian.

Sketch of Pf :



Rank: only
needs $|\lambda|, |\mu| < 1$,
not minimal.

Q: What about WAF?

Theorem (Nguyen - Schlenker - S. '25)

Let (M, h) be a hyperbolic manifold, let $S \subset M$ be an embedded, orientable, two-sided closed minimal surface with principal curvatures in $[-1, 1]$.

Then any neighbourhood U of S in M contains a (non-minimal) surface with principal curvatures in $(-1, 1)$.

Cor If M is weakly almost-Fuchsian, then it is quasi-Fuchsian.

Def Let (M, h) be complete hyperbolic $S \times \mathbb{R}$.

M is **nearly-Fuchsian** if it contains a closed surface with principal curvatures in $(-1, 1)$

Cor The conjecture "AF \Leftrightarrow NF" is false. from 2000s

